Roark's Formulas for Stress and Strain |
---|

Shear, moment, slope, deflection of elastic straight beams-table 8.1 |

W=load (N), w=unit load (N/mm), M_{0}=applied couple (Nmm), θ_{0}=angular displacement (degrees), |

R_{A} and R_{B} are the vertical end reactions at left and right respectively (N), |

M_{A} and M_{B} are the reaction end moments at left and right respectively (Nmm) |

2. Partial distributed load |
---|

2a. Left end free, right end fixed (cantilever) |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

M_{A} (Nmm): |
MA | M_{B} (Nmm): |
MB |

σ_{A} (MPa): |
σA | σ_{B} (MPa): |
σB |

θ_{A} (degrees): |
θA | θ_{B} (degrees): |
θB |

deflection y_{A} (mm): |
yA | deflection y_{B} (mm): |
yB |

_{l}= w

_{a}(uniform load on the entire span)

Max M = M_{B} (Nmm): |
maxM |

Max σ = σ_{B} (MPa): |
maxσ |

Max θ = θ_{A} (degrees): |
Maxθ |

Max y = y_{A} (mm): |
maxY |

If a=0 and w_{a} = 0 (uniformly increasing load) |
---|

Max M = M_{B} (Nmm): |
maxM |

Max σ = σ_{B} (MPa): |
maxσ |

Max θ = θ_{A} (degrees): |
Maxθ |

Max y = y_{A} (mm): |
maxY |

If a=0 and w_{l} = 0 (uniformly decreasing load) |
---|

Max M = M_{B} (Nmm): |
maxM |

Max σ = σ_{B} (MPa): |
maxsigma |

Max θ = θ_{A} (degrees): |
Maxθ |

Max y = y_{A} (mm) |
maxY |

2b. Left end guided, right end fixed |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

M_{A} (Nmm): |
MA | M_{B} (Nmm): |
MB |

σ_{A} (MPa): |
σA | σ_{B} (MPa): |
σB |

θ_{A} (degrees): |
θA | θ_{B} (degrees): |
θB |

deflection y_{A} (mm): |
yA | deflection y_{B} (mm): |
yB |

If a=0 and w_{l} = w_{a} (uniform load on the entire span) |
---|

Max -M = M_{B} (Nmm): |
max-M |

Max -σ = σ_{B} (MPa): |
max-σ |

Max +M = M_{A} (Nmm): |
max+M |

Max +σ = σ_{A} (MPa): |
max+σ |

Max y = y_{A} (mm): |
maxY |

If a=0 and w_{a} = 0 (uniformly increasing load) |
---|

Max -M = M_{B} (Nmm): |
max-M |

Max -σ = σ_{B} (MPa): |
max-σ |

Max +M = M_{A} (Nmm): |
max+M |

Max +σ = σ_{A} (MPa): |
max+σ |

Max y = y_{A} (mm): |
maxY |

If a=0 and w_{l} = 0 (uniformly decreasing load) |
---|

Max -M = M_{B} (Nmm): |
max-M |

Max -σ = σ_{B} (MPa): |
max-σ |

Max +M = M_{A} (Nmm): |
max+M |

Max +σ = σ_{A} (MPa): |
max+σ |

Max y = y_{A} (mm): |
maxY |

2c. Left end simply supported, right end fixed |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

M_{A} (Nmm): |
MA | M_{B} (Nmm): |
MB |

σ_{A} (MPa): |
σA | σ_{B} (MPa): |
σB |

θ_{A} (degrees): |
θA | θ_{B} (degrees): |
θB |

deflection y_{A} (mm): |
yA | deflection y_{B} (mm): |
yB |

If a=0 and w_{l} = w_{a} (uniform load on the entire span) |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

Max +M (Nmm): | max+M | at x (mm) = | x |

Max -M = M_{B} (Nmm): |
max-M | Max -σ = σ_{B} (MPa): |
max-σ |

Max +σ (MPa): | max+σ | Max θ = θ_{A} (degrees): |
maxθ |

Max y (mm) | maxY | at x (mm) = | x |

If a=0 and w_{a} = 0 (uniformly increasing load) |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

Max +M (Nmm): | max+M | at x (mm) = | x |

Max -M = M_{B} (Nmm): |
max-M | Max -σ = σ_{B} (MPa): |
max-σ |

Max +σ (MPa): | max+σ | Max θ = θ_{A} (degrees): |
maxθ |

Max y (mm) | maxY | at x (mm) = | x |

If a=0 and w_{l} = 0 (uniformly decreasing load) |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

Max +M (Nmm): | max+M | at x (mm) = | x |

Max -M = M_{B} (Nmm): |
max-M | Max -σ = σ_{B} (MPa): |
max-σ |

Max +σ (MPa): | max+σ | Max θ = θ_{A} (degrees): |
maxθ |

Max y (mm) | maxY | at x (mm) = | x |

2d. Left end fixed, right end fixed |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

M_{A} (Nmm): |
MA | M_{B} (Nmm): |
MB |

σ_{A} (MPa): |
σA | σ_{B} (MPa): |
σB |

θ_{A} (degrees): |
θA | θ_{B} (degrees): |
θB |

deflection y_{A} (mm): |
yA | deflection y_{B} (mm): |
yB |

If a=0 and w_{l} = w_{a} (uniform load on the entire span) |
---|

Max +M (Nmm): | max+M | at x (mm) = | x |

Max -M = M_{A}=M_{B} (Nmm): |
max-M | Max -σ = σ_{A}= σ_{B} (MPa): |
max-σ |

Max +σ (MPa): | max+σ | ||

Max y (mm) | maxY | at x (mm) = | x |

If a=0 and w_{a} = 0 (uniformly increasing load) |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

M_{A} (Nmm): |
MA | σ_{A} (MPa): |
σA |

Max +M (Nmm): | max+M | at x (mm) = | x |

Max -M = M_{B} (Nmm): |
max-M | Max -σ = σ_{B} (MPa): |
max-σ |

Max +σ (MPa): | max+σ | ||

Max y (mm) | maxY | at x (mm) = | x |

2e. Left end simply supported, right end simply supported |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

M_{A} (Nmm): |
MA | M_{B} (Nmm): |
MB |

σ_{A} (MPa): |
sigmaA | σ_{B} (MPa): |
σB |

θ_{A} (degrees): |
θA | θ_{B} (degrees): |
θB |

deflection y_{A} (mm): |
yA | deflection y_{B} (mm): |
yB |

If a=0 and w_{l} = w_{a} (uniform load on the entire span) |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

Max M (Nmm): | maxM | when x (mm) = | x |

Max σ (MPa): | maxσ | Max θ = θ_{B} (degrees) |
maxθ |

Max y (mm): | maxY | when x (mm)= | x |

If a=0 and w_{a} = 0 (uniformly increasing load) |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

Max M (Nmm): | maxM | when x (mm) = | x |

Max σ (MPa): | maxσ | ||

Max θ = θ_{A} (degrees) |
maxθ | Max θ = θ_{B} (degrees) |
maxθ |

Max y (mm): | maxY | when x (mm)= | x |

2f. Left end guided, right end simply supported |
---|

R_{A} (N): |
RA | R_{B} (N): |
RB |

M_{A} (Nmm): |
MA | M_{B} (Nmm): |
MB |

σ_{A} (MPa): |
σA | σ_{B} (MPa): |
σB |

θ_{A} (degrees): |
θA | θ_{B} (degrees): |
θB |

deflection y_{A} (mm): |
yA | deflection y_{B} (mm): |
yB |

If a=0 and w_{l} = w_{a} (uniform load on the entire span) |
---|

Max M = M_{A}(Nmm): |
maxM |

Max σ = σ_{A}(MPa): |
maxσ |

Max θ = θ_{B} (degrees) |
maxθ |

Max y = y_{A}(mm): |
maxY |

If a=0 and w_{a} = 0 (uniformly increasing load) |
---|

Max M = M_{A}(Nmm): |
maxM |

Max σ = σ_{A}(MPa): |
maxσ |

Max θ = θ_{B} (degrees) |
maxθ |

Max y = y_{A}(mm): |
maxY |

If a=0 and w_{l} = 0 (uniformly decreasing load) |
---|

Max M = M_{A}(Nmm): |
maxM |

Max σ = σ_{A}(MPa): |
maxσ |

Max θ = θ_{B} (degrees) |
maxθ |

Max y = y_{A}(mm): |
maxY |